USN

Fourth Semester B.E. Degree Examination, June/July 2016 Microprocessors

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. What is a microprocessor? Explain how data, address and control busses interconnect various system components. (05 Marks)
 - b. Explain in detail with a neat diagram, the working of the internal architecture of the 8086 microprocessor. (10 Marks)
 - c. Giving the format of the 8086 microprocessor's flag register, explain in detail each flag bit.
 (05 Marks)
- 2 a. Explain the following addressing modes with examples
 - i) Direct addressing
 - ii) Immediate addressing
 - iii) Register indirect addressing
 - iv) Base plus index addressing

v) Base relative plus index addressing.

(10 Marks)

b. Explain how virtual address is translated into physical address in 8086 microprocessor. Given :CS = 2000h, DS = 4000h, ES = 6000h, SS = 8000h, BX = 300h, BP = 200h, SI = 100h and LIST = 0014h

Find the physical address for the following:

- i) MOV DL, LIST[SI]
- ii) MOV AL, LIST[BX] [SI]
- iii) MOV AH, CS : [BX]
- iv) MOV CL, 23h [BP].

(06 Marks)

- c. Explain the working of PUSH and POP instructions indicating the state of the stack after the execution of the instructions. (04 Marks)
- 3 a. Giving the general machine language instruction format of a MOV instruction, generate the machine code for the following instructions:
 - i) MOV DL, [DI]
 - ii) MOV [1000H], DL
 - iii) MOV [BP], DL
 - iv) MOV WORD PTR [BX + 1000H], 1234H.

(10 Marks)

- Write an ALP to sort five 8-bit numbers stored in an array in descending order using bubble sort algorithm.
 (06 Marks)
- c. Explain the working of XLAT instruction, illustrate its importance using a suitable program.

 (04 Marks)
- 4 a. Explain the following instructions with examples:

i) DAA ii) RLC iii) AAM iv) MOVSB.

(08 Marks)

- b. Write an ALP using 8086 instruction set to count the number of ones in a given 8 bit number and store the result at a memory location. (07 Marks)
- c. What is a procedure? Explain the sequence of operations that take place when a procedure is CALLed and RETurned. (05 Marks)

PART-B

- 5 a. Differentiate between:
 - i) Assembler and linker
 - ii) PUBLIC and EXTERN
 - iii) Macros and procedures.

(06 Marks)

- b. What are modular programs? Explain. Using the PUBLIC and EXTERN directives write a program in assembly language that reads a string into an array in one module and converts the string to uppercase in another module.

 (08 Marks)
- c. What is recursion? Explain. Write an ALP to find the factorial of a single digit positive number using recursive procedure. (06 Marks)
- 6 a. Explain the significance of the following pins of an 8086 microprocessor:
 - i) READY ii) TEST iii) ALE iv) HOLD.

(04 Marks)

- b. With neat timing diagrams explain read bus cycle and write bus cycle.
- (08 Marks)
- c. With a neat diagram, explain the minimum mode configuration of 8088 microprocessor based computing system. (08 Marks)
- 7 a. Differentiate between memory mapped IO and IO mapped IO. (04 Marks)
 - b. What is address decoding? Why is it required? Explain how a 3 8 line decoder could be used to interface 64K memory using 8K memory chips. (08 Marks)
 - c. Design a memory system to interface 8 × 8K EPROM and 8 × 4K SRAM to 8088 microprocessor. Assuming SRAM memory starts from 00000H and EPROM from E0000h.
- 8 a. Explain the control word format of 8255 PPI in IO mode and BSR mode. Construct control words for the following:
 - i) Port A input, PORT B output and PORT C output ports
 - ii) PORT A bi-directional mode, PORT B output port
 - iii) Set PC1 and reset PC5.

(08 Marks)

- b. With a neat block schematic diagram explain the internal architecture of 8254 PIT. (08 Marks)
- c. What is DMA? Why is it required? Explain the basic DMA operation.

(04 Marks)

* * * * :